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E X E C U T I V E  S U M M A R Y 

Sponsored by NASA’s Intelligent Systems Project within the Computing, Information and
Communication Technology (CICT) Program, a conceptual architecture study is under way to
address the problem of getting the most societal value from the large volumes of Earth and space
science data that NASA expects to accumulate in the future. The particular focus of this study is
on the next generation of archiving systems, the “Intelligent Archive,” and its role within an end-
to-end context. Beyond the obvious needs for more efficient storage and access to data that
should be mostly met by improvements in hardware technologies, advances are needed in
concepts and tools to enable intelligent data understanding. Large and ever-growing quantities of
data pose a challenge to basic data management and utilization. However, there are several other
challenges that need to be considered:

• Data acquisition and accumulation rates tend to outpace the ability to access and analyze
them

•  The variety of data implies a heterogeneous and distributed set of data providers that
serve a diverse, distributed community of users

•  Unassisted human-based manipulation of vast quantities of archived data for discovery
purposes is difficult and potentially costly

• If NASA is to migrate its technologies to operational agencies’ decision support systems,
it is necessary to demonstrate the feasibility of near-real-time utilization of vast quantities
of data and the derived information and knowledge

• The types of data access and usage in future years are difficult to anticipate and will vary
depending on the particular research or application environment, its supporting data
sources, and its heritage system infrastructure

The objective of the study is to formulate ideas and concepts and to provide
recommendations that lead to research by the computer science community in the near-term,
prototyping to demonstrate feasibility in the mid-term, and operational implementation in the
period from 2012 to 2025. The approach consists of the definition of future usage scenarios and
needs for data usage in applications, projection of advances in technologies, and an abstraction of
an intelligent archive architecture. The abstracted architecture is defined without regard to
physical implementation and is considered from the point of view of the functions that need to
exist in support of usage scenarios. This is because the functions of an intelligent archive are
more stable than the physical architectures and technologies used to implement them. By
abstracting entities and processes from scenarios into functional elements, we can explore
application strategies of technologies and system resources for future intelligent archives.

An Intelligent Archive (IA) includes all items stored to support “end-to-end” research and
applications scenarios. The stored items could be anywhere in a highly distributed end-to-end
system, including on-board caches with the sensors and those in the client systems with the users.
Stored items include:

• Data, information, and knowledge

• Software needed to manage holdings
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• Interfaces to algorithms and physical resources to support acquisition of data and their
transformation into information and knowledge, storing the protocols to interact with other
facilities

The phrase IA generalizes the term archive from a simple repository of data to one that
supports and facilitates derivation of information and knowledge. An IA has greater ability to
operate more autonomously than conventional archives and provides better service to users (as an
intelligent assistant) with less operator intervention and, hence, with lower cost.

An IA offers new capabilities that distinguish it from archives of today. Some examples of
such capabilities are:

• Storing and managing full representations of data, information, and knowledge

• Building intelligence about transformations on data, information, knowledge, and
accompanying services involved in a scientific enterprise

• Performing self-analysis to enrich metadata that adds value to the archive’s holdings

• Performing change detection to develop trending information

• Interacting as a cooperative node in a “web” of other systems to perform knowledge building
(where knowledge building involves the transformations from data to information to
knowledge) instead of just data pipelining

• Being aware of other nodes in the knowledge building system (participating in open systems
interfaces and protocols for virtualization, and collaborative interoperability)

Many variations and permutations of operational scenarios are possible given the architecture
model of elements, component objects, and associations for an intelligent knowledge building
system. The conceptual architecture establishes a framework for how future intelligent archives
operate in a context of cooperating systems and infrastructures. Furthermore, the architecture is a
necessary guide where opportunities for integrating intelligent systems, data understanding, and
machine learning can be identified and mapped to goals for automation that increases effective
data utilization.

This study of the IA demonstrates the possibility of a new synthesis of ideas and technology.
This new synthesis promises unique benefits for science, but they will require more research and
effort. Some key technical questions that should be addressed are:

• Throughput requirements of the Intelligent Data Understanding (IDU) algorithms in the
“context” of an IA

• Appropriate placement of grid technologies within the overall “knowledge building system”

• Likely physical locations (hardware allocations) for the functions of the IA in the light of
projected enabling technologies, and the flows of data, information, and knowledge. (For
example, could a decision support system be hosted on a hand-held device?)

• Design choices regarding integration of e-commerce with science software, for command
control vs. peer-to-peer negotiation paradigms, for data- vs. software- mobile paradigms, for
micro-sensor data collection, for automated quality assessment, etc.
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1 .  I N T R O D U C T I O N 

One of NASA’s vision statements is “To improve life here on Earth.” Derived from this are
several strategic objectives for the Earth Science Enterprise (ESE). The ESE supports NASA’s
vision by providing to the research community, policy makers, and the general public, data and
information products and the knowledge derived therefrom to enable/improve decision-making.
Some of the benefits of this are conserving resources, increasing prosperity, improving the quality
of life, reducing impacts of disasters, and saving lives. To enable this, ESE combines the NASA-
unique capabilities for space-borne observations with research in various Earth science
disciplines to address a number of scientific questions.1 A suite of Earth observing satellites,
funded research investigations, and the Earth Observing System Data and Information System
(EOSDIS) along with the federation of Earth Science Information Partners (ESIPs), are now
operating to provide an unprecedented amount of data and information products to a broad user
community. In addition, ESE supports research in and development of technologies needed for
future Earth observing systems,2 research in and development of information systems’
technologies 3 and an applications program.4

As expressed in NASA’s plans referenced above, some of the key science and applications goals
for 2010 are to improve predictive capabilities for:

• Weather
– 5-day forecasts with over 90 % accuracy
– 7-10 day forecasts with 75% accuracy
– Routine 3-day forecasts of rainfall
– Hurricane landfall prediction with +/- 100 km accuracy 2-3 days ahead of time
– 3-5-day forecasts of air quality

• Climate
– Routine 6-12 month seasonal predictions
– Experimental 12-24 month predictions
– 10-year experimental climate forecasts

• Natural Hazards
– Continuous monitoring of surface deformation in vulnerable regions with millimeter

accuracy
– Improvements in earthquake and volcanic eruption forecasts
– Improved post-eruption hazard assessment

Some of the areas where additional progress is hoped for as a vision for the future (2025) are5:
• 10-year climate forecasts
• 15- to 20-month El Niño prediction
• 12-month regional rain rate
• 60-day volcano warning
• 10- to 14-day weather forecast
• 7-day air quality notification
• 5-day hurricane track prediction to +/- 30 km
• 30-minute tornado warning
• 1- to 5-year earthquake experimental forecast
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More details about current thinking, identification of research and measurements needed, and
projections on what could be achieved are given for three key areas of significant societal impact:
biological invasion and ecological forecasting,6 understanding sea level changes,7 and
understanding and responding to earthquake hazards. 8 For society to derive benefits from these
advances, it is necessary not only to conduct the research and development to enable such
capabilities, but also to demonstrate such technologies in operational environments and transition
them to operational agencies. In most cases, the operational agencies need to use the information
and knowledge acquired through such advancements in real- or near-real-time environments to
support decisions that have significant impact on society. Thus, for the scientific and
technological advances from NASA to be truly applied for the benefit of the community,
advances are needed in sensor technologies, satellite systems, scientific research, transformation
of data to information and to knowledge, and dissemination of knowledge to support decisions in
a timely manner.

Over the past decade, there have been significant advances in our ability to collect, archive, and
disseminate data. In the 1980s, NASA’s Earth science data were generally held by principal
investigators or specialized data systems with little interaction or interoperability. Specific data of
interest could be difficult to find. The access to data became easier, and the quality of services
associated with data increased significantly, with the development of Version 0 EOSDIS9 through
interoperable, geographically distributed, data centers. The explosion of the World Wide Web
(WWW) has since revolutionized the access to information. Considerable progress has been made
in ingesting, archiving, and distributing large volumes of data using distributed databases with
EOSDIS,10,11,12 discovery of the existence of datasets and services through the Global Change
Master Directory, 13,14 the area of interoperability through the EOS Data Gateway (EDG),15

DIAL,16 Distributed Oceanographic Data System (DODS),17 Alexandria Digital Library,18

EOSDIS Clearing House (ECHO),19 and other efforts. Access to specialized data products and
applications’ development for focused user communities has been enabled by NASA through the
Federation Experiment involving over 24 Earth Science Information Partners (ESIPs).20,21 There
are a number of efforts underway to take advantage of distributed computing and storage
resources that are generally referred to as “Grid Architectures.” Examples of these are: National
Science Foundation (NSF)’s National Technology Grid,22 NASA’s Information Power Grid,23 US
Department of Energy (DOE)’s DISCOM,24 GriPhyN,25 NEESgrid,26 and the Particle Physics
Data Grid.27

Even with the above accomplishments, further developments in information sciences and
technology are critical to the achievement of NASA's vision and its deployment for operational
applications. Currently, NASA’s Earth Science Technology Office (ESTO) supports the
development of information system technologies28 for near- to medium-term deployment in
mission applications. In addition, development of more embryonic technologies for longer-term
mission adaptation is supported through other NASA programs, addressing needs of all NASA
enterprises. An example of such a program is the Computing, Information, and Communication
Technologies (CICT) Program, a component of which is the Intelligent Systems Project (ISP).29

One of the technical areas under the ISP is Intelligent Data Understanding (IDU), supporting
several basic research activities and conceptual studies.30 This report is on one of the conceptual
studies within IDU, namely, Intelligent Archives (IA).
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S T U D Y  M OT I VAT I O N 

The motivating factors for this study are:

• Data acquisition and accumulation rates tend to outpace the ability to access and analyze
them. For example, the rate at which EOS data are accumulating in the archives today is
about 3 TB/day.

• Beyond the obvious needs for more efficient storage and access to data that are met by
improvements in hardware technologies, advances are needed in concepts and tools to
enable intelligent data understanding and utilization.

• If NASA is to migrate its technologies to operational agencies’ decision support systems,
it is necessary to demonstrate the feasibility of near-real-time utilization of vast quantities
of data and the derived information and knowledge.

• The variety of data implies a heterogeneous and distributed set of data providers that
serve a diverse, distributed community of users.

• Unassisted human-based manipulation of vast quantities of archived data for discovery
purposes is difficult and potentially costly.

• While there is no substitute for human intelligence, it is necessary to provide automated
“intelligent assistants” that can supplement the abilities of researchers to transform them
into information and knowledge.

• The types of data access and usage in future years are difficult to anticipate and will vary
depending on the particular research or application environment, its supporting data
sources, and its heritage system infrastructure.

Advances in data management, hardware, and software/information systems technologies
over the next decade provide exciting possibilities for improved access and utilization of data as
well as design and deployment of true “knowledge building systems” (KBSs) that move beyond
the basic capabilities of “Data and Information Systems.” A KBS in the context of Earth sciences
can be viewed as an end-to-end system starting with sensors (space-borne, airborne or Earth-
bound) and ending with users who derive knowledge through scientific research and/or exploit
the knowledge in real-life applications. Knowledge building involves a dynamic interplay
between people and technology that transforms observations into data, data into information, and
information into knowledge. An IA fits within this end-to-end context and will support this
knowledge building enterprise with new capabilities and facilities.

The purpose of this report is to introduce the IA within its end-to-end context and show its
architecture at a conceptual level. Section 2, The Conceptual Architecture, covers the definition of
basic terms and a discussion of the architecture. Section 3 discusses intelligent archive use case
scenarios to help illustrate operational concepts for an IA within its end-to-end context, in order to
highlight new capabilities required by the IA. Section 4 describes technology supporting the
intelligent archive and examines the future of key technologies that will influence the evolution of
distributed intelligent systems. Section 5 concludes the report with a summary and recommendations
for future work.



9 

2 .  T H E  C O N C E P T U A L  A R C H I T E C T U R E 

I N TR O D U C T I O N 

This section presents a context and conceptual architecture for Intelligent Archives (IAs). The
architecture represents concepts and models for future intelligent systems that have new
capabilities for advanced data utilization. High-level elements, objects, definitions, models, and
viewpoints of an intelligent archive system are described. This section also serves as a technical
reference for other report sections and for “drill-down” detailed white paper topics.

Advances in scientific knowledge are increasingly enhanced by progressive integration of
computing, data management, communications, and sensor technological capabilities into the
enterprise of science. This is the hallmark of digital era science; nevertheless, Earth and space
science are enterprises that build knowledge. The Intelligent Archive will support this knowledge
building enterprise with new capabilities and facilities.  We define the terms data, information,
and knowledge as follows:

• Data: an assemblage of measurements and observations, particularly from sensors or
instruments, with little or no interpretation applied (e.g., measurements from
scientific instruments or market’s past performance)

• Information: a summarization, abstraction or transformation of data into a more
readily interpretable form (e.g., results after performing transformations by data
mining, segmentation, classification, etc., such as a Landsat scene spatially indexed
based on content, assigned a “class” value, fused with other data types, and subset for
an application, for example a GIS)

• Knowledge: a summarization, abstraction, or transformation of information that
increases our understanding of the physical world (e.g., predictions from model
forward runs, published papers, output of heuristics, or other techniques applied to
information to answer a “what if” question such as “What will the accident rate be if
an ice storm hits the Washington D.C. Beltway between Chevy Chase and the
Potomac crossing at 7 a.m.?”)

H I G H  L E V E L  A R C H I T E C T U R E  C O N C E P T 

The end-to-end system context for the IA begins with sensors and ends with knowledge and
understanding. By considering a data transformation and utilization process we defined the
context to include elements for scientific observations on one end and those elements that
transform them for ultimate use as data, information, and knowledge on the other end. Twenty-
first century science enterprises will increasingly be supported by computing applications and
systems that are, in turn, supported by vast powerful computing and communication
infrastructures in this context of transformation and use (see Figure 2-1).

With this “end-to-end” context, we can organize the key elements of the knowledge building
enterprise into an overall system viewpoint. In addition, the context provides an excellent
framework for applying use case scenarios to discover new requirements, as we discuss in
Section 3, page 19. One should notice immediately in Figure 2-1 that the beginning and end of
the system context lie within a general distributed system. In fact, all but the smallest intelligent
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archives will be built upon a geographically wide integration of physical resources and
information repositories.

The functions of the IA can be deployed over discrete computing facilities or over a network
of facilities as an open, distributed resource. Small to large intelligent archives in the near future
can be built and operated either collaboratively or privately because of evolving technologies,
standards, and methods. Rapidly changing computing technology will permit the formation of
new enterprise system capabilities built upon distributed interconnected infrastructures; a system
of systems. With the inclusion of more self-directed automated processes for autonomous
discovery, self-aware management, and self-healing systems, new advantages can be realized for
both archive users and operators.

F i g u r e  2 - 1 :   Co n t e x t  a n d  S c o p e  o f  t h e  I n t e l l i g e n t  A r c h i v e 

This conceptual architecture is forward looking to anticipate how intelligent systems and
changing technology can be configured to improve upon conventional process-chains of data
acquisition, data processing, distribution, archiving, and use. A critical element of the future
configuration will be feedback loops connecting intelligent algorithms, methods, and technologies
within the archive. When implemented throughout an enterprise system, these automatic feedback
loops create adaptive systems that respond to the need for greater data utilization and improved
digital scientific services.

A R C H I T E C T U R E  O F  T H E  I N T E L L I G E N T  A R C H I V E 

ARCHITECTURE ELEMENTS

Architecture elements represent a class or aggregation of objects at the highest level of
architecture abstraction. These abstractions can be decomposed into finer levels of detail when
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modeling a system and composing an architecture representation. Key elements for an IA include:

• Actors – anyone or any thing that interacts with the system; stakeholders (e.g.,
Scientist End-User, Application End-User, Interim Archive, Permanent Archive,
Standard Product Producer, Value-Added Provider)

• Applications –software that interfaces between actors and systems or infrastructures

• Systems – components of an enterprise supporting kinds of processes and functions

• Computing Infrastructures - configurations of computing resources and services that
enable and support systems and applications

• Observation Infrastructures – configurations of components aligned to make
observations, collect data, and interface with other systems and infrastructures

• Object:  a thing, either real world or conceptual, i.e., something concrete or a concept
with definable boundaries and meaning.31 Objects can be hierarchically modeled into
different levels of abstraction and detail. This is important for capturing the
components and relationships within and among elements that make up the intended
system. We introduce a set of representative component objects for each key system
element (actors are external) below. While this is not a comprehensive list they are
starting points for developing more detailed conceptual descriptions of future
intelligent science data management systems.

The rest of this subsection provides a brief discussion of Applications, Systems, Computing
Infrastructures, and Observation Infrastructures. Following this, a more detailed discussion is
provided of Objects – Required Components of the System, Architecture Object Model, and
Intelligent Archive Functions. The subsection is then concluded with a brief discussion of an
Operational Scenario.

AP P L I C AT I O N S 

Analysis Tools – software tools supporting the transformation of data into information and
knowledge

Exploration Tools – human-machine interactive portal to data, information, services, and system
capabilities for knowledge building activities

Application Model – a complex application-specific model of a subject composed of relevant
data, information, algorithms, and structures to view that subject in a virtual context (e.g.,
a virtual farm)

Visualization Tools – software operating on complex data and information structures for allowing
researchers to explore the data content and subject matter visually

S Y S T E M S 

Science Models – scientific systems representing understandings of natural systems; such
computer modeling systems support continued model development, operation,
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visualization, and knowledge building

Data Production – system processes for production of data and metadata products

Archive – system of capabilities including management, persistence, access, and distribution of
data, information, and knowledge products; archives range from small, single-data-type
management to institutional multi-product long-term data management systems; archives
can be distributed, local, and/or virtualized

Data Assimilation – systems that blend independent observations for comparison with model
forecasts and calculate new initial states for next forecasts and alignments with future
observations

C O M P U T I N G  I N F R A S TR U C T U R E S 

Virtual Infrastructure – the configurable interface between physically distributed resources &
services and application system software (a Grid is a current example described in
Section 4, page 30)

Physical Infrastructure – the actual computational, storage, and communication resources and
services

Dedicated Infrastructure – privately controlled and restricted computational resources and
services for specific use (may not participate or be exposed to an openly shared or collaborative
environment)

O B S E R VAT I O N  I N F R A S TR U C T U R E S 

Platforms – structures supporting sensors and interactions with other systems

Sensors – instruments for making observations and generating data

Sensor Webs – arrays of deployable, configurable, and interactive sensors and spacecraft

REQUIRED COMPONENTS OF THE SYSTEM

The requirements for the IA are driven by the need to accurately and automatically transform
tremendous volumes of data into information and ultimately knowledge. The IA satisfies these
requirements by incorporating system intelligence into support systems and services. The
conceptual architecture shows how system intelligence can be integrated with systems, with
supporting infrastructures, and even with the processes that manage the evolving configuration of
host machines and software applications.

The application of system intelligence to knowledge building support systems and services is
the key to the accurate and reliable automation of the processes transforming enormous data
volumes into information, and ultimately knowledge. Thus, the architecture stipulates
management requirements for the intelligent system to ensure the system functions in the broader
enterprise of end-to-end data transformation. For example, system intelligence would be
incorporated when existing applications are interconnected or integrated with an automated
scheduling system. Many of the system elements that partially satisfy these requirements are
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illustrated in the IA model shown in Figure 2-2.
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F i g u r e  2 - 2 :   Mo d e l  f o r  t h e  K n o w l e d g e  B u i l d i n g  S y s t e m 

An archive of the future should perform core functions with increased automation, efficiency,
and flexibility in a dynamic knowledge building enterprise. Archive-related functions requiring
system intelligence and data understanding include:

• Data management – store/retrieve, control, and distribute data, information, and
knowledge (i.e., data products, models, simulation outputs, extended complex
metadata, product-algorithms)

• Value-added products and services – data characterization, mining, fusion,
transformations, re-sampling, re-projections, feature detections, and quality control

• Operations – high reliability, self-monitoring, self-healing, self-adjusting, autonomic
“lights-out” internal operations

• Interfaces with resource infrastructures – dynamic sensing and recruitment of
connected computing capabilities, communication assets, and persistent storage.

• Interfaces with cooperating systems – expose available services and interfaces for
other systems to use including external applications

System intelligence also resides in interface functions between systems as intelligent system-
to-system interfaces become virtualization layers. A virtualized system offers abstract, functional
system interfaces that can be registered as a service and then used by other systems to support
interoperations among applications. Virtualized system resources (see left vertical column in
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Figure 2-2), such as Grid-like plug-ins, permit interactions between archive-related systems and
physical resource infrastructures (see Section 4, page 30).

ARCHITECTURE OBJECT MODEL

An understanding of concepts for intelligent archives emerges from a model of enterprise
system objects. The object model describes the types of objects in the system and various
relationships that exist among them. Expanded models that show more details about attributes,
operations, and associations of each class are beyond the scope of this report. They will be the
topic of a “drill-down” white paper. The knowledge building system introduced in Figure 2-2
contains four subclasses that aggregate next level systems ranging from IAs to intelligent sensors
(see Figure 2-3). Three of these are further decomposed into member object classes (“…” denotes
more classes exist).

Some examples of associations between lower level classes and higher level-classes represent
logical relationships. For example, both interim and permanent archives are related operationally
or functionally with many data production systems. In other words an archive can participate with
data production systems in a dual role as suppliers of source data for processing and as a
repository for finished data products. On the other hand sensors are associated with production
systems and an interim archive in more complex ways.

In one scenario, many sensors are directly associated with one interim archive. Conversely,
several archives may support data from one kind of sensor. And multiple sensors can be
associated with multiple archives. To illustrate this, we can imagine a time when a spaceborne
sensor may also have a local archive as part of its configuration of technology. Furthermore, this
local sensor-based archive can interface with a ground-based archive to form a dynamic
virtualized archive supporting new kinds of on-demand data access closer to the source of
observation in time. Persistence of data will vary based on the amount of distribution from the
root source, replication generations, and policies of each archive organization participating in
managing these data.

Additional scenarios can be derived from logical associations among the different object
classes for intelligent archives. In one view, sensors and archives and production systems are
logically interrelated as separate objects. But in an end-to-end context, the architecture affords
future system developers flexibility with regard to implementations and configurations of
component objects, such as the spaceborne sensor’s archive above. A logical archive, either
sensor-hosted or ground-based, could also be seamlessly bundled with a data production
capability. Such an archive component with a nested data production component could include a
self-improving capability for generating content-based metadata products. Other kinds of
intelligent archive functions similarly can be configured resulting in dedicated and/or virtualized
system capabilities.
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F i g u r e  2 - 3 :   En d - t o - E n d  C o n t e x t  o f  K n o w l e d g e  S y s t e m  O b j e c t  M o d e l 

INTELLIGENT ARCHIVE FUNCTIONS

An IA can have a broad range of functions and purposes. Differences in these characteristics
contribute to a taxonomic classification of archives. For example, there can be interim and
permanent archives. Permanent archives preserve science data, information, and knowledge
assets indefinitely, whereas interim archives establish policies on the duration of data retention.
While these have much in common, the former has significant needs for intelligence in the
difficult job of data migration, the latter in its decisions on retention. Some archives will perform
functions required for science missions, local science team activities, value-added production
services, and the knowledge building enterprise as a whole. Each will have a mix of common and
unique functional intelligent capabilities.

Figure 2-4 introduces an overview of the core functional capabilities. The figure also
illustrates how functions (i.e., software applications and libraries) are shared between subclasses
of archives and how archives cooperate with each other and external users.

Both interim and permanent archive systems draw upon at least five core functions. The
rounded rectangular boxes represent core system functions with corresponding sub-functions
listed in dashed boxes. Intelligent systems and data understanding technology underlie many of
the core archive functions. Future functions for operations will be characterized by intelligent
capabilities that increase automated self-regulation, recovery and performance tuning, and
management of interface control information for seamless cooperation with other systems.
Intelligent data management governs such functions as semantic queries, retrieval strategies,
cataloging of assets for human and machine level access, and machine learning applied to access
patterns to improve storage and retrieval strategies.
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F i g u r e  2 - 4 :   A M o d e l  o f  t h e  A r c h i v e  F o c u s e d  o n  O b j e c t s  a n d  F u n c t i o n s 

Intelligent data understanding techniques will support functions like data characterization and
data mining, improving overall archive metadata generation. Dynamic complexities of computing
resource allocation and management will also be enabled by intelligent functions for
provisioning, adapting and sharing infrastructure resources. Similarly, functions that support
cooperation with external systems will have intelligent interfaces to dynamically register, locate,
and broker interoperable distributed services for on-demand seamless functioning. This sample of
intelligent archive functionality sets the stage for introducing emergent system behaviors.

OPERATIONAL SCENARIO

Embedded and distributed system intelligence permeates archives and the other architecture
component objects in the end-to-end system context. Given the abstracted architecture object and
functional model, we can explore the behavior of this knowledge building system using a
scenario. Figure 2-5 describes a sample operational flow.

Transformations of observations into utilized data and information by the enterprise system
flow horizontally among the high-level system component objects in Figure 2-5. Interactions
below each object show how the component objects collaborate for a sample scenario. The
behavior of the collaboration follows two aspects of an illustrative operational scenario; routine
processes and on-demand use.
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Observations accumulate routinely in an archive. The archive provides data to production
systems that in turn, store products in an archive. These flows are conducted seamlessly through
intelligent functions for coordinated interoperable processing. The archive also automatically
analyzes its contents to build and update archive metadata. Metadata are enriched by goal-
oriented discovery and data characterization algorithms. These algorithms constantly detect
features and trends in the data over time and update archive metadata accordingly.

Application users have flexible, on-demand access to data and information concurrently with
routine operations. For example, in one simplified scenario, a scientist developing a high
resolution model of a weather event needs to perform a “what if” inquiry to test predictive
accuracy of the model. The scientist uses an application tool interfaced with the knowledge
building system to formulate an inquiry. The application tool automatically selects required
services and issues requests against real or virtual archive holdings. Requests for virtual holdings
trigger a cascade of requests to obtain, for example, fused data, or subsets of observations, or the
output from another predictive model or even new observations. Though not shown in the figure,
that cascade of actions across these cooperating nodes would require the IA to be a repository of
protocols of the permissible rules for collaboration, and might even require storing an image of
the dynamic “state” of its collaborating nodes to assure efficient collaboration. The role of
machine intelligence here is not so much to solve the scientific problem but rather to acquire
specific data and computational resources that answer recognizable steps in the solution specified
by the scientist. The IA complements the scientist who cannot be expected to track the changing
holdings and capabilities of a vast computational enterprise.

Continuing with the sequence scenario, requests are issued and addressed through
collaboration among production, archive, and sensor systems. As the on-demand observation is
returned it is registered with the archive and returned to the production system. Segmentation, re-
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sampling, rescaling, subsetting, and data fusion services invoked at the production system are
performed and the results sent to the exploitation tool. Upon high-speed analysis the exploitation
tool issues an additional request for long-term trend information from the archive that is returned
and assimilated into a “what-if” visualization result that is simultaneously stored in the archive
and presented to the scientist. (See the scenario subsection, page 19, for further operational
discussion and illustrations.)

A R C H I T E C T U R E  S U M M A R Y 

Here, we have described a conceptual architecture that will evolve along with changing
technology but one with a persistent viewpoint for addressing improved data management and
use. The architectural viewpoint encompasses a context that includes applications, systems,
infrastructures, and interfaces yielding a coherent distributed knowledge system. The architecture
envisions new functional features with the ability to:

• Store low level data and produce products on demand (virtual products made possible
by powerful but inexpensive processing resources)

• Distribute data products to many nodes to allow data mining to be performed
concurrently where each node is expected to have its own storage and processing
resources

• Permit the storage of data to transcend initial mission/project life

• Flexibly store data close to the sensor allowing the sensing system to perform data
maintenance (calibration, correlation, product generation)

• Enable sensors and science model systems to become IA system “users”

• Facilitate data backup by replicating data on distributed system nodes (the number of
replications and versioning will be determined by data usage, value and storage cost)

• Support system-wide collaboration and adaptive load management with low level
planning/scheduling functions combined with self monitoring capabilities (these
constantly assess the health of system elements, user demands, data inputs, and long-
term science demands formulating alternatives that will enable the system to adapt to
changing circumstances as they occur)

Intelligent archives offer new capabilities distinguishable from archives of today. Highlights
of these differences include:

• Manages and stores full representations of information, and knowledge in addition to
data

• Builds intelligence about building data, information, knowledge, and accompanying
services involved in a science enterprise

• Performs self-analysis to enrich metadata that adds value to an archive’s holdings

• Performs analyses to detect long-term trends and features
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• Interacts as a cooperative node in a “web” of other systems to perform knowledge
building (where knowledge building involves the transformations from data to
information to knowledge) instead of just data pipelining

• Is aware of other nodes in the knowledge building system (participates in open
systems interfaces and protocols for virtualization, and collaborative interoperability

Many operational scenario variations and permutations are possible given the architecture
model of elements, component objects, and associations for an intelligent knowledge building
system. The conceptual architecture establishes a framework for how future intelligent archives
operate in a context of cooperating systems and infrastructures. Furthermore, the architecture is a
necessary guide where opportunities for integrating intelligent systems, data understanding, and
machine learning can be identified and mapped to goals for automation that increases effective
data utilization.

3 .   I N T E L L I G E N T  A R C H I V E  U S E  C A S E  S C E N A R I O S 

P E R S P E C T I V E S  T H R O U G H  U S E  C A S E  S C E N A R I O S 

This section describes scenario-based perspectives with which to develop visionary IA
capabilities. Scenario-based approaches drive clear pictures of end-to-end interrelationships
among data and information, consumers, data providers, value-added information services,
archives, and data acquisition missions32,33. Exploration of conceptual architectures through use-
scenarios provides insights into limitations of existing solutions, challenges, issues, and probable
opportunities for innovation. We have explored scenarios for precision agriculture, advanced
weather prediction, and virtual astronomy observatories to uncover requirements for intelligent
system services and capabilities. The consideration of these three scenarios has yielded additional
perspectives on how intelligent archives and intelligent system applications can lead to better data
utilization. A brief discussion of these scenarios follows.

P R E C I S I O N  A G R I C U L T U R E  S C E N A R I O 

INTRODUCTION

Precision agriculture is concerned with refining agricultural practices to maximize crop yield
with minimum cost through improved use of data, information, and knowledge technologies.
Demands for data and information services are explored through a scenario involving a grower
(farmer) for an individual farm. Such a system could form part of a larger grid, with precision
farms aggregated for example to the regional level. Use cases for this example consist of
planning, cultivating, and harvesting.

DESCRIPTION

Precision agriculture in this scenario is concerned with the scope and parameters of a minimal
agricultural production unit. The farm is characterized as a relatively small spatial area
(considered in acres) for agricultural products suited to regional ecological, weather, and growing
constraints. Geo-spatial information relevant to these farms puts a premium on high-resolution
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data both spatially and temporally. A digital farm is a sophisticated intelligent data and
information pool. It serves as an interface between specific interests of the farm and vast external
data sources. It also serves to integrate and administer different kinds of extracted and filtered
information.

Daily data, information, and knowledge support the principal farm activities of crop planning,
cultivation, and harvesting. Information-intensive support services for each activity include
current conditions monitoring, histories and time series studies, trends/risks analysis, prediction
and forecasts, “what-if” investigations, and outcome comparisons. Detailed information about
land, weather, water, agriculture markets, prior yields, agri-chemical options, seeds, etc. help in
planning crop selection and planting. High-resolution information is required to monitor, assess
risks, and make decisions about appropriate interventions to maintain crop health. Similarly, to
maximize yields, decisions about harvest timing benefit from information about current and
future conditions. The digital farm maintains a model for perpetual use that integrates remotely
sensed information about farm assets and information collected from the farm about outcomes of
plans, cultivation techniques, and harvests.

OPERATIONS

Summary and detailed information about every aspect of the farm, including past, present,
and future, is available through an interactive digital farm application. The digital farm works on
behalf of the grower. Digital farm services are available from multiple portals (workstations,
mobile devices) from within the house, farm buildings, vehicles, or even a combine. Interaction
with the digital assistant can be conducted by natural language either via voice or keyboard.

A digital farm can interpret, broker, and fulfill requests for information dynamically and
autonomously. The digital farm fulfills this role by brokering and invoking services to create and
maintain encyclopedic farm-relevant information that is ontologically, spatially, and temporally
organized. The digital farm must preserve information about soil, crop, weather, and moisture
conditions. Moreover, it constantly updates its information with farm-specific in situ sensor
inputs and from external sources of data. Indeed the farm’s interfaces with the outside are crucial
to pooling farm-relevant data from primary archives and agricultural services.

Virtual farm services produce a multidimensional model of the entire farm that the grower
can inspect from his or her office or combine cab. The virtual farm serves as an interactive
reference of farm-specific assets integrated with historical, current, and modeling information.
Views of the farm can be summoned to within a square meter with variable time series. Types of
information range from historical to actual current conditions to what-if scenarios cast into the
future.

ROLES FOR SYSTEM INTELLIGENCE

The virtual farm is predicated on applications of intelligent data understanding. Therefore a
key theme is filtering and distilling specific farm-relevant information from an avalanche of data
involving a chain of intelligent data reduction and information/knowledge extraction services.
Intelligent capabilities must derive and transform information from data and models scaled to the
interests of the specific farm (to aid in “what-if” predictions). Functional components that
facilitate the distillation of information relevant for a farm on a twenty-four hour basis include:

• Instrument/sensors for resolving farm-scale features and assets
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• Hyperspectral data mining and extraction techniques

• Machine learning for automating the evolution of system intelligence

• Modeling and prediction algorithms

• Visualization of preprocessed and dynamically processed data

These component technologies must be designed and implemented to interoperate throughout
data production, quality assurance, cataloging, metadata extraction, data content characterization,
data product archiving, and custom services. Data understanding is crucial for automating the
distillation, characterization, detection, and extraction of such things as objects, phenomena,
features, conditions, and other contributors to knowledge.

TECHNOLOGY CHALLENGES AND OPPORTUNITIES

Precision agriculture will benefit from intelligent systems technologies that enable virtual farms
to broker requests for appropriate internal/external information services. Technologies will be
needed to support dynamic and semantic interactions between information querying interfaces
and intelligent archive systems. Precision agriculture is predicated on accurate, temporal, spatial,
and multi-parameter data tailored to the concerns of the consumer. Serving required data and
information on-demand requires embedded intelligent technologies throughout the enterprise
system. A major challenge for cooperating systems used in precision agriculture will be to rapidly
and accurately transform observation data into specific data products usable by each agricultural
unit. Functional transformation capabilities must be coupled with considerable throughput
capacities. For example, future annual precision agriculture data consumption scaled to the
requirements of a California Central Valley agricultural zone is estimated at 1.5 TB per 1000
acres. This quantity becomes a significant challenge when considering there are approximately
940,000,000 acres of farmland in the US. Extrapolating further nearly 1,411PB of data per year
will need to be processed into local views often in near-real time. Opportunities for embedded
intelligent systems operating in high-performance infrastructures to help crop growers access,
manage, and use valuable data daily include:

• Sensors, networks, and interfaces to interoperable processing infrastructures

• Services environments for producing, managing, distilling, and filtering precision
agriculture data and information products (i.e., historical, current, what-if predictions)

• Algorithms for hyperspectral data understanding and mining

• Automated data access (subscription), query, and data fusion

• Intelligent interfaces for machine-to-machine and human-machine interactions.

A D VA N C E D  W E AT H E R  F O R E C A S T I N G  S K I L L  S C E N A R I O 

INTRODUCTION

Earth science models provide the primary tool for weather forecasting. The basic concept
involves applying a suite of equations (models) to measurements of heat, cloudiness, humidity,
and other integral parameters to project how those factors change over time – thus forecasting the
behavior of the atmosphere. Because weather forecasting science attempts to accurately simulate
the real world, it must rely on observations, modeling, and theory. Determining correct initial
conditions for starting models needs to be addressed when attempting to minimize errors and
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prevent models from straying into uselessness. If science can get the weather models right with
more detailed observations, then we might see nearly perfect three-day forecasts and even reliable
ones beyond ten days.34

Models are complex computer codes that divide the atmosphere, land, and oceans into
hundreds of interacting grids. Until recently, the resolution of the grid boxes has been as large as
185 miles on a side. This meant that many of the Earth’s features that affect changes in weather
were smaller than the boxes and had to be approximated. New models are now approaching 20
miles on a side and can account for more of these details (but still not all of them). This refined
resolution provides more precision in the model and hence, more accuracy in its predictive power.
Next generation systems envisioned to support and improve this process tightly couple modeling
systems with observation systems.

DESCRIPTION

The context for a future weather forecasting skill scenario interrelates observation, science,
information services, and information consumers. The scenario is based on conceptual elements
of the ESTO Weather Prediction Technology Investment Study.35 This study identified science
applications and technology required to enable skilled weather forecasts of ten to fourteen days
by 2025. We introduce the concepts for this scenario here and reserve full descriptions for a
related white paper.

Overall the future weather forecasting systems includes weather science teams; weather
remote sensing missions; data processing, modeling, dissemination, and archiving groups;
weather prediction information services; and weather information consumers. Atmospheric and
climate sciences collect and assimilate data into research models. Building and improving models
is an integral part of this knowledge system.

Predicting or forecasting future weather conditions over a particular region requires accurate
data and knowledge about atmospheric forces, physical parameters, and the interrelatedness of
atmosphere to the whole Earth system. However, the accuracy of weather predictions tends to
fade rapidly as a function of time due to a lack of precise initial conditions and the non-linear
complexities of weather.

OPERATIONS

While the theoretical upper limit of weather forecasts is two weeks, the precision of forecasts
from an operational weather system is limited by the methods for gathering essential data on the
initial conditions (actual state) of the atmosphere at any model starting time. In this advanced
scenario, precision can be improved within fixed limitations on measurement sensors by
organizing two-way interactions between the observing systems, data assimilation, and computer
models. This new organization can autonomously tailor observing strategies based on knowledge
of current and future states of the atmosphere obtained by modeling. By means of these
interactions, a weather system following the advanced scenario can confirm, predict, and validate
model parameterizations or make measurements in specific locations to improve models and
forecasts. The system can also anticipate support of reconfigured prediction models based on
autonomously obtained observation inputs. Overall complexities of coordinating and
commanding interaction among the interdependent parts of the overall system will require
system-wide embedded intelligence, ensuring seamless consistent orchestration and control.
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The observing system provides comprehensive observations and measurements in real time.
It must be flexible to provide special observations on demand. And, optimally, the observation
system combines all sources of sensor assets for surface, atmospheric, and space–based data. The
envisioned sensor web will be reconfigurable and tasked in response to evolving model
requirements or events of interest. The modeling and data assimilation system couples terrestrial
and space observations to a continuously running mesoscale model. In this manner, the global
mesoscale model’s sophisticated parameterization can be updated quickly and regularly with
actual observational inputs. This kind of periodic infusion of actual observational inputs into the
model overcomes model “drift.” A significant challenge for this vision system is being able to
rapidly transform acquired data for use in real-time.

ROLE FOR INTELLIGENCE SYSTEMS

Several opportunities for intelligent system applications can be identified for architectural
segments of the weather forecasting system. The observing system segment requires intelligence
for:

• Observation management (overall arrays and individual members)

• Scheduling, commanding, onboard operational autonomy management

• Distributed processing coordination

• Automated calibration and quality control, communications integrity

• Translating dynamic observation requests into optimal and timely results

• Implementing flexibility within and across platforms

• Tailoring observing strategies based on knowledge of current states

• Detecting, recognizing, and capturing specific events, states, and phenomena

• Registering and tagging observation data with appropriate information compliant
with standards for product development and use by other archives, systems,
disciplines, and campaigns

• Adapting to new configurations autonomously or by human command

Opportunities for applying intelligent systems to the modeling/data assimilation system
segment include:

• Data ingest and assimilation management

• Brokering observational data requests and observation targeting decisions

• Interpreting data for recalibration, transformation, re-projections, and conversions

• Facilitating model coupling

• Data mining/data understanding, automated analysis
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• Determining where data collection is needed

• Automatically detecting gaps or quality issues

• Management of model results for interoperability

• Creation of information and knowledge products

In addition to system-to-system and within-segment processing opportunities for machine
intelligence, intelligent applications are required for facilitating human-in-the-loop interactions.
These areas include monitoring, control, recovery, tuning, operation, and modification functions
for the creation of user-specified and standard weather products.

Data management issues underlie the end-to-end system. Because of the real-time and near
real-time characteristics of the visionary weather forecasting system, a heavy premium is placed
on dynamic data management. This is reinforced by the distributed data processing that will also
occur in various parts of the overall system (e.g., at the sensor source, in a data processing
facility, at an archive, a modeling center, or with a science analysis team).

Sensor webs and data assimilation/modeling centers will generate huge volumes of data and
information necessitating new intelligent data management strategies to cope with the dynamic
complexities associated with acquisition, processing, use, and persistence. Intelligent data
management and access to these massive data stores on a dynamic basis indicates a critical need
for an IA solution.

TECHNOLOGY CHALLENGES AND OPPORTUNITIES

Achieving future skilled weather forecasting goals requires innovative space-based, airborne, and
terrestrial sensor systems producing weather data of various resolutions, rates, bands, parameters,
and volumes. Improvements to existing forecasting system capabilities combined with evolving
infrastructures and innovative research technologies can enable skilled weather forecasts of ten to
fourteen days by 2025 (current forecast predictive skill is five to seven days). Challenging areas
for innovative technology and applications include:

• Quality, mixed-resolution observations and data acquisition systems

• High-speed communication and processing of observations

• Rapid complex data assimilation strategies

• Predictive modeling strategies and algorithms

• Powerful archiving, distribution, and interactive visualization technology infrastructures

Advanced weather model building and analytical tools will generate additional types of data and
information requiring special archive services. An assessment of expected optimized global data
volumes covering required parameters, temporal, horizontal, and vertical resolutions, and vertical
measurement layers could reach 7.5 TB/day by 2025.36 Technologies supporting very rapid
operational processing and data management services will be required for especially for data
assimilation, interchange, modeling, archiving, and visualization uses.
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V I R T U A L  O B S E R VAT O R Y 

INTRODUCTION

Virtual observatories aim to handle a proliferation of large astronomy datasets with built-in
software tools for scientists to query and mine data across archives.37 Over the next decades
astronomers expect to practice “precision cosmology” for example, leading to characterizations of
the size, structure, and evolution of the universe. Achieving goals such as these will require the
collection and integration of petabytes of data from space and ground surveys.38 Already several
projects worldwide are developing virtual observatory mechanisms to federate collections of data
and information for an entire scientific discipline (i.e., National Virtual Observatory,
Astrophysical Virtual Observatory, Astrogrid, Astrovirtel). The goal is to knit these projects
together so that ground and space-based astronomy archives are linked and accessible to all.
Intelligent archives are well suited to the functional task of integrating services that a virtual
observatory requires to manage and make accessible astronomy datasets.

DESCRIPTION

The data avalanche in astronomy is attributable to increasing use of Charge Coupled Device
(CCD) cameras for telescopes. Advances in electronics permit the deployment of gigapixel
instruments used to conduct multi-spectral surveys of the sky. Indeed the volume of pixels from a
typical astronomical CCD detector doubles every two years with this rate increasing in the near
future.39 Like genomics and other cutting-edge fields of science, astrophysics must cope with the
growing problem of how to manage and make use of enormous distributed amounts of data
generated by digital-based instruments and experiments.

A virtual observatory is a science-driven effort that emphasizes bottom-up sharing through
common integrated services for both observational data and toolkits of analysis software. Many
existing astronomical data archives are associated with a specific instrument. Each specific
archive has historical reasons to archive data in a particular way. But systematic studies and
surveys of the celestial objects depend on combining multi-spectral and multiple instrument data
from multiple archives. One solution is advocated by the archive institutions participating in the
National Virtual Observatory. In this solution, each institution maintains control over individual
data holdings but institutions can share data by conforming to extensible metadata standards and
interchange protocols. Users in the community will also be able to share data and analysis tools
through properly designed virtual observatory interfaces. A core set of standards, interoperability,
and management services will be necessary to support distributed virtual observatory operations.

OPERATIONS

Different telescopes acquire different observational data in different formats managed in
geographically distributed archives. Many archives also link data from multiple experiments. A
virtual observatory of collective archives will operate based on a common system approach for
data pipelining, archiving, and retrieval. It also ensures easy access to data in these archives by a
diverse community of users. The system will enable distributed development of a suite of
commonly usable new software tools for querying, correlation, visualization, and statistical
comparisons of shared data.
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Virtual archives utilize high-speed network connectivity among participating archives and
terascale computing facilities.40 Because bandwidth is a limiting factor computation needs to be
performed close to the data. But Grid technology infrastructures will allow remote access to both
data and computing/analysis facilities facilitated by an operational virtual observatory.

ROLES FOR SYSTEM INTELLIGENCE

Opportunities for intelligent systems in virtual observatories include: automated data
corrections, reprocessing, and recalibrations (e.g., data “curation”); cross-dataset and cross
spectrum data mining with automated phenomena “discovery”;  open-ended resource discovery;
enriched cross-archive metadata generation for uniform query and browse, data fusion and
combination management. Roles for intelligent archive capabilities are aligned with the goals for
virtual observatories to closely link and coordinate data curation, archive data management,
uniform access, and data mining services. Overall intelligent archive and Grid functions will
allow astronomers to more easily find, access, analyze, and manipulate data as if it were local to
their workstations.

TECHNOLOGY CHALLENGES AND OPPORTUNITIES

Concepts for multi-wavelength synoptic virtual observatories have already inspired active
research in Grid technology. Grid infrastructures will enable large-scale interoperable sharing of
data and computing resources necessary to support next generation astrophysical surveys,
analysis, and research. New algorithms and tools will also be needed for data mining, statistical
analysis, visualization, data fusion, data filtering, and virtual interactive interfaces. New protocols
and standards for transparent access to multiple distributed heterogeneous systems will also be
needed to support data discovery, metadata and query interchange, code-shipping, and data
product delivery. Intelligent interfaces will also be required for storing and managing both data
and metadata throughout a virtual observatory. Opportunities for intelligent archives are well
suited for this emerging but visionary space science system environment.

4 .   T E C H N O L O G Y  S U P P O R T I N G  T H E  I N T E L L I G E N T  A R C H I V E 

P U R P O S E 

It is useful to understand the effect new and emerging technologies will have on intelligent
archive concepts at the time of postulated prototyped and full system implementation (2012
through 2025). Based on a review of relevant literature we believe that one can expect to see
dramatic changes in both functionality and performance in information system technologies in the
time period of interest. However, because of the difficulty of accurately projecting into the future,
this report looks at supporting technology in the near- to mid-term, and then provides a short
glimpse of the longer term.

NEAR- TO MID- TERM SUPPORTING TECHNOLOGY

“Evolutionary” technology changes are more likely to affect our ability to prototype and
begin implementation of an IA. Some of these changes are a little closer to our vision at this point
and are discussed in this section.
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The algorithms developed for the Intelligent Data Understanding area in the Intelligent
Systems Project demonstrate what is possible when intelligent systems are applied to scientific
research. Will it be feasible to deploy an intelligent system in an operational environment
characterized by prodigious data volumes and an expectation for near instantaneous recognition
of phenomena? Intelligent archives depend on robust intelligent algorithms to meet the
challenging performance requirements of data intensive earth science and space science research.
When this will be feasible also depends on the availability of sufficient capacities and types of
computing, storage, and communication technologies.

In this report we introduce a survey of technology areas that have a bearing on the future of
intelligent archives and the architectures in which they will be configured. Each of these
technology areas should continue to be monitored and updated for new developments. The
perspective of  NASA’s Intelligent Systems program underscores the importance of conducting
broad technology reviews when developing conceptual architectures and intelligent archives:

“The IS Program is developing critical system intelligence capabilities that will
not otherwise grow out of current NASA information technology R&D activities,
and that cannot realistically be expected to emerge from other sectors.”41

In order to focus attention on what must be done in any future IA development, it will be
necessary to track what will likely be done by others and avoid duplication. In this section we
introduce a survey of technology areas that have a bearing on the future of intelligent archives
and the architectures in which they will be configured. Each of these technology areas should
continue to be carefully monitored and updated for new developments.

It is certainly true that the IA must be affordable as well as feasible. Matured estimates of
costs for developing intelligent archives balanced with cost savings and the value to science have
yet to be explored.

D ATA P R O C E S S I N G 

This report has pointed out the challenges of data volume and processing load. Indeed, it may
never be possible to perform all desired processing on the sensor data, particularly for
hyperspectral sensors. The technology survey has focused on how improvements in computing
hardware might mitigate the problem.

For over thirty years, the power of computers has doubled roughly every 18 months, an
empirical result dubbed Moore’s Law. For that reason, software that was once confined to a few
special purpose machines now runs everywhere, e.g., computer graphics. While Moore’s Law has
held over three decades in silicon-based semiconductor technology, it is now approaching
quantum mechanical limits. Several alternatives (e.g., quantum computing, asynchronous
computing, 3-dimensional chips) are in research and development in an attempt to surmount the
quantum barrier and continue uninterrupted progress. An interruption of many years is possible,
however, alternative plans are required. If Moore’s Law ends or passes through a period of
stagnation, a second, lesser known industry trend will become important. Technology that falls
behind Moore’s Law of performance does not disappear immediately; but continues to sell in
high volume at a lower price due to improvement in production techniques and amortization of
capital expenses. With lower prices, it would be affordable to build extremely large collections of
semiconductors in a single unit. If the parts can be made to cooperate effectively, the resulting
computer will set a new standard for performance/price ratio. The barriers to this approach are the
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software and hardware interconnection technology.

The limitations imposed by interconnections are most noticed in highly-parallel processor
configurations. The gold standard for a highly-parallel supercomputer is to produce N*R
operations per second where N is the number of processors capable of R operations per second.
To reach that goal, specialized interconnection technology must provide a fast connection
between any two processors as well as between any processor and any memory element. The
required “switching-fabric” is more complicated and expensive than the technology of the
Internet and many different designs have been tried. The optimal design has not yet been found.

The previous paragraphs address parallel computing elements that are closely coupled and
executing in “fine-grained” parallel processing mode. There is also a class of problems that allow
the work to be subdivided into large parcels and executed in “coarse-grain” mode. For these
problems, one might consider a configuration that divides the work over widely separated
machines interconnected by a network, i.e., “grid computing,” which is addressed later in the
report.

For space applications it is important to mention that Moore’s Law applies for flight-qualified
hardware, but the law shows a 5 to 7 year delay relative to ground-based components. One reason
for the delay is that each generation of space-qualified components has started out as a ground-
based, commercial design. After that follows an engineering program to radiation-harden the
design. The demand for space-qualified components is too small to justify the investment in an
entirely new design. On the other hand, continual progress on the ground almost guarantees that a
significant amount of processing can be eventually collocated with the sensor in space.

D ATA S T O R A G E 

Data storage capacity has improved exponentially over time at a rate similar to the Moore’s
Law (doubling capacity every 18 months) improvement of processing speed. However, over the
last decade, science data volumes (see Figure 4-1) have risen commensurately with computing
power and storage capacity for a given cost as demand keeps pace with capacity. The reason is a
complex interplay between science requirements and what can be afforded. Thus, we cannot
assume that further advances in storage or computing technology will solve the technological
problem posed by future growth in data volumes. Furthermore, growth in gigabytes/$ in storage
capacity does not tell the whole story. While this figure has been increasing rapidly in both disk
and tape technology areas, the ability to access large quantities of data (i.e., seek time and
throughput) has not been keeping pace with storage capacity. Random access to stored data still
incurs latency due to the mechanical motion of access mechanisms, an effect magnified when slower
mechanisms such as tape or removable media are used to reduce the cost/byte of storage in an
archive. In tape archives, fundamental limitations are eventually reached at the macroscopic level,
that is, the speeds of such elements as the robotic arms or tape transports.42 In disk systems, the cost
of connecting and managing large disk arrays eventually dominates the cost of the raw disks.43 It is
thus uncertain when or even if disk storage will replace tape storage for data volumes at the highest
end.
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This area of storage performance is a matter of particular concern for the IA because the
number of random access queries against the data store will rise dramatically when the demand

from autonomously operated intelligent algorithms is added to the current demand from scientist-
led investigations. Issues concerning increasing numbers of available granules will also affect
database and disk efficiency, seek times, and throughput. However, it is possible that a
breakthrough in storage technology could solve the data access problem. For example, the  IBM
“Millipede” nanoscale probe storage technology uses electron force microscopy technology to
support parallel reads and writes, with projections of very high storage densities and low
production costs.44 In planning for future data volume growth, it will be important to track not
just the storage capacity of raw media, but the overall cost for a given technology to store and
distribute high data volumes. Also, with the replacement of tape by disk somewhat uncertain,
caching and archive organization strategies may continue to have a significant role in an
intelligent archive.

C O M M U N I C AT I O N S 

For ground-based networks, optical fiber communication is improving faster than any other
current technology. Nevertheless, bottlenecks remain in connectivity, resulting from a number of
factors such as switch speed and economic viability. Within the next several years, however,
optical switching elements should begin appearing on the market. The transition to optical petabit
bandwidth and switching capacities are underway. Dense Wave Division Multiplexing (DWDM)
for example, multiplies bandwidth capacity by using different color wavelengths to carry data in
parallel. Next generation DWDM capabilities will have 300-500 colors each supporting
40Gbps.45 Microelectro mechanical switching (MEMS) is currently poised to leapfrog current
switching technology and render petabit capacities in the very near future. As switch technology
advances, and assuming sufficient economic incentives remain, the Internet may evolve to the
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point where a task might transparently draw on data or processing power anywhere. Moreover, a
network of ground stations might select an optimal station for each data transfer with a spacecraft
enabling free-space optical communications without concern for occasional interference from the
weather.

For communication between spacecraft, the defense agencies have taken a lead in
demonstrating optical communication links including those using passive transponders. These
passive units could be used in low-power micro satellites in a sensor web.

I N F R A S T R U C T U R E S  A N D  T H E  G R I D 

There is widespread interest in developing architectures that support science and engineering
using distributed computing, as manifested in a number of “Grid” architectures currently
underway.46 The Grid architecture research focuses on large-scale resource sharing, innovative
applications, and, in some cases, high-performance storage and computing. Examples of Grids
that are presently being built include NSF’s National Technology Grid, NASA’s Information
Power Grid, DOE’s DISCOM, GriPhyN, NEESgrid, Particle Physics Data Grid, and the
European Data Grid47). Some of these architectures (e.g., the Information Power Grid) show
promise in providing the infrastructure for an intelligent data system, e.g., the Intelligent Archive.

If Grid technology matures and remains available in the time frame of the Intelligent Archive,
then the IA could be constructed as a diverse set of intelligent components, such as archives,
sensors, models and applications, all set within, and linked together by, the Grid infrastructure.
The Grid infrastructure itself might also embody intelligence, for example, in making decisions
about whether to move data to algorithms, algorithms to data, or both to a high-speed computing
facility. However, it is important to note that Grid research and development is targeted toward
the interaction of the various software components in a distributed data system. This leaves much
research to be done on the intelligent components themselves.

 The whole infrastructure for systems and applications in a knowledge enterprise rests on core
services provided by the physical assets, computers, storage, communications, etc. External
systems can interface with the infrastructure as dedicated (private/local) or shared (virtual)
resources. Two kinds of interfaces exist: one between the infrastructure and the
systems/applications and one that integrates physical resources into a collective virtual resource.
A key objective of the Grid architecture is the transparent, adaptive, dynamic sharing of resources
in a highly distributed environment. Grid technologies provide a generic approach to resource
sharing that is applicable to many applications.48  Figure 4-2 relates Grid architecture to an
overall infrastructure for IA and cooperative systems. Systems such as Intelligent Archives
interact with computing infrastructures through a sophisticated interface. Grid protocols, services,
and APIs including other open standards for Internet and Web interfacing become this high level
interface. A closer inspection of Grid architecture helps illustrate how physical computing
resources used by an IA for example, are organized, virtualized, and made accessible for shared
use.
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In a Grid architecture the Fabric layer provides the resources for which applications have
shared access mediated by Grid protocols operating through the Connectivity layer.49 The
Connectivity layer defines core communication and authentication protocols required for Grid-
specific network transactions. The Resource layer builds on Connectivity layer to define
protocols for the secure negotiation, initiation, monitoring, control, accounting, and payment of
sharing operations for individual resources. The Collective Layer, contains protocols and services
that are not associated with any one specific resource but rather are global in nature and deal with
interactions across collections of resources.50 This contributes to the virtualization of resources.
The important feature of the Collective layer is that it can deal with a wide variety of sharing
behaviors without placing new requirements on the resources being shared. It is at this layer
where there is the potential for adaptive management and control.

The evolution of Grid architectures is likely to be driven in part by the evolution of its current
and potential software components as those components add new and more intelligent services.
Thus, IA concepts and design strategies could help drive Grid functionality to be able to:

• Adapt to expected revolutionary changes in information technology

• Utilize intelligent processes at all layers so that the enterprise is able to operate in a
semi autonomous fashion to the point that it is self maintaining and self correcting

• Include sensors and simulation models as members of the virtual organizations

• Support virtualization of services and functions seamlessly across the entire
enterprise
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LONG-TERM SUPPORTING TECHNOLOGY

Examining longer term supporting technology becomes substantially more difficult, but by
estimating the functionality and performance of technologies based on historical information and
possible future science and engineering achievements one can see interesting possibilities. The
actual growth in performance expected from future systems may well be highly non-linear, may
involve discontinuities, and may not accurately be predictable. Forecasting accurately beyond a
few years into the future appears to be extremely risky. Jack Worlton51 shows that even when
using the “Delphi” technique (a group of experts answers questions and circulates their responses,
iterating the process until opinions converge), forecasting accuracy fell exponentially with time,
decreasing to 0.5 in 4 years. Extrapolation the analysis data indicates that accuracy falls to 0.3 in
6 years, 0.2 in 8 years, and that 10-year forecasts would be accurate in only one event in seven.

The most successful way of forecasting technologies in 10 to 20+ year time frames is to
observe historical technology changes and apply similar rates of change. Using such a method
allows one to accommodate the effects of paradigm shifts (i.e., revolutions) in a technology (e.g..,
going from tubes to transistors). What this means for the world of 2025 is, that based on the rate
of change in the 1990s, one can expect to see a doubling of progress each decade [starting in
2000]. A diagram that presents a technology timeline of forecasted changes is shown in Figure 4-
3 (see adjoining page).

A glimpse of the possible effects of “revolutionary technology advances” can be observed in
Figure 4-3 and the “blending” of several key technologies including Nanotechnology,
Biotechnology, Information Technology, and Cognitive Science (NBIC).52 These co-evolving
technologies are expected to have a profound impact on improving the performance and enabling
new functionalities of future intelligent archive components and systems. It was speculated in a
recent report on converging technologies by the NSF that:

“In the early decades of the twenty-first century, concentrated efforts can unify
science based on unity in nature, thereby advancing the combination of
nanotechnology, biotechnology, information technology, and new humane
technologies based in cognitive science. With proper attention to ethical issues and
societal needs, converging technologies could determine a tremendous improvement
in human abilities, societal outcomes, the nation’s productivity, and the quality of
life. This is a broad, cross cutting, emerging, and timely opportunity of interest to
individuals, society and humanity in the long term.”53

One of the key challenges of an IA will be its ability to host and support the intelligence-
based algorithms, being developed by the Intelligent Data Understanding area of the Intelligent
Systems program. These algorithms are being developed to perform functions that are currently in
a research stage. Continued development of these research algorithms is essential for automating
the means to manage and make use of rapidly increasing data acquisition rates, data complexities,
and data volumes. In such an environment, it is unrealistic to expect success without greatly
improved system performance. Improved performance will depend a great deal on the underlying
hardware and software technologies of an IA. Figure 4-3 appears to assure us that the necessary
underlying powerful technologies will indeed be there, but possibly in very unfamiliar forms.
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5 .   S U M M A R Y  A N D  R E C O M M E N D A T I O N S 

S U M M A R Y 

This study has developed a conceptual architecture for future data archive systems that will
efficiently manage large volumes of NASA data, support the extraction of information and
knowledge by intelligent algorithms, facilitate scientific use of these data resources, and
demonstrate feasibility of near-real-time utilization of the derived knowledge by NASA’s
operational partners. NASA’s ESE combines NASA-unique capabilities for acquiring, storing,
and distributing unprecedented amounts of data and information products to Earth science
research communities. Forward-looking plans and science goals for improving predictive
capabilities for weather, climate, and natural hazards continue to drive the trends toward
producing and using ever increasing amounts of complex data. Astute exploitation of
advancements in technology are integral to achieving these goals. The same is true for using
technology in a coherent manner (e.g., architecture-oriented) to address the operational challenges
of managing future distributed data intensive science.

The conceptual architecture presented in this report establishes a framework in which an
Intelligent Archive generalizes the conventional archive from a simple repository of data to one
that supports and facilitates the derivation of information and knowledge. An IA has greater
ability to operate autonomously but participate cooperatively with other systems and applications
than conventional archives. It also can provide new and better services to users (be they sensors,
applications, or other production systems) with less operator intervention, more stability, and
higher quality with less expensive human overhead.

The algorithms that automate the transformation of data to information and knowledge are
currently being developed within the IDU area of the IS Program. The IA can be the system
context for integrating and configuring many of  these algorithms. It can also play a key support
role in an end-to-end knowledge building system by:

• Storing and managing full representations of data, information, and knowledge

• Building intelligence about transformations on data, information, knowledge, and
accompanying services involved in a scientific enterprise

• Performing self-analysis to enrich metadata that adds value to the archive’s holdings

• Performing change detection to develop trending information

• Interacting as a cooperative node in a “web” of other systems to perform knowledge building
(where knowledge building involves the transformations from data to information to
knowledge) instead of just data pipelining

• Being aware of other nodes in the knowledge building system (participating in open systems
interfaces and protocols for virtualization, and collaborative interoperability)

We have described the architecture of the IA in sufficient detail to distinguish its place and
role in the end-to-end system. We have then investigated this role by developing three operational
scenarios in some detail. Next, we have reviewed available technology to identify areas where
additional progress would be required to implement an IA.



3 5 

Our study of the IA has demonstrated the possibility of a new synthesis of ideas and
technology. This new synthesis promises unique benefits for science, but it cannot be
implemented without more research and effort. Consequently, we will close this report by
recommending attention to certain key technical issues, continuing effort on IA studies, and
initiation of actions outside the IA study.

K E Y T E C H N I C A L  I S S U E S 

The preceding report has mentioned a large number of issues that must be resolved before an
IA can be built. Several key technical questions remain open and require further analysis:

• Projected throughput requirements of the IDU algorithms based on quantitative
analysis in the context of an intelligent archive are currently unknown

• Integration of grid technologies with the IA’s “knowledge building system” is not yet
clear

• Alternatives regarding physical architectures that instantiate the functional
architecture, starting from sensorwebs continuing through predictive models, and
then delivery via future mobile technologies require more analysis

• Interfaces to emerging software architectures, such as e-commerce with science
software, command-and-control vs. peer-to-peer negotiation paradigms, data- vs.
software- mobile paradigms, collaborating micro-sensor data collection, and
automated quality assessment, etc. require more analysis

C O N T I N U I N G  S T U D I E S 

At the present time, study efforts continue in the following areas:

• Analysis of what may be expected from commercially available enabling
technologies in order to determine the gaps that NASA should address

• “Drill-down” on a few key technical issues that have surfaced in the preceding study,
including:

o Autonomous QA by and within an Intelligent Archive

o Intelligent Resource Optimization

o Automated Detection and Integration of New Sources of Data

o Virtual Data Products using On-Demand Processing

o Architectural Topologies

o Data Transformations

o Management dimensions of an intelligent archive (e.g., virtualization, self-
awareness, autonomic concepts)
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• Investigation of a potential partnership-based prototype to explore the concepts of the
Intelligent Archive

R E C O M M E N D E D  A C T I O N S 

The following actions are outside the scope of this study, but are recommended to further the
understanding and lead towards implementation of the IA:

• Characterize future data access, archiving, and utilization of scientific data within
both scientific and applications enterprises. This characterization should attempt to
specify “quantitative goals” that the computer science research community could
solve for NASA

• Develop an implementation strategy that can guide IA prototypes developed by
partnerships between NASA, industry, and universities into eventual operational
implementations
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